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INTRODUCTION AND RELATED WORKS

>  COVERT COMMUNICATIONS
Enhance privacy by avoiding exposure of information transmission
Communication with low probability of detection

>  FUNDAMENTAL LIMITS OF COVERT COMMUNICATIONS
(Square Root Law [Bash et al.’13]) No more than O(+/n) bits over n uses of noisy memoryless channel
Zero-rate regime: rate of communication vanishes asymptotically

>  EXTENSIONS AND RELATED WORKS
First- and second-order asymptotics [Wang et al.’16, Bloch’16, Tahmashi-Bloch’19]
Multiuser channels [Arumugam-Bloch’18’19’19, Tan-Lee’19,Cho-Li’21]
Codes for covert communications [Freche et al.’17, Kadampot et al.”18’19, Lamarca-Matas’19, Zhang et al.’20, Wang-Bloch’21]
AWGN channels [Wang et al.’16, Zhang et al.’19, Yan et al.’19]
MIMO-AWGN channels [Abdelaziz-Koksal’17, Bendary et al.’19, Wang-Bloch’21]
Variational distance constraint [Tahmasbi-Bloch’19, Zhang et al.’19, Wang-Bloch’21]
Classical-Quantum channels [Bash et al.’15, Sheikholeslami et al.’16, Wang’16]
Bosonic Channels [Bullock et al.’20, Gagatsos et al.’20]



REVIEW OF COVERT COMMUNICATION:

»  Switch ¢ € {0, 1} controls transmission state at Alice
> |Innocent symbol xo: absence of communications
Induces distributions Py = Wy |x—x,and Qo £ Wz x—y,
» Code C : occurrence of communications
induces distribution Q" at Willie

>  RELIABILITY: Bob reliably recovers the message and guesses when the communication occurs

>  DETECTION: Willie (passive warden) distinguishes
Hypothesis Hy: Q" (absence of communications)
Hypothesis Hi: Q" (occurrence of communications)

»  GOAL: make sure Willie’s test close to blind test



COVERT COMMUNICATION:

>

Single-mode lossy thermal-noise bosonic channel

Transmissivity 7

Described by a beamsplitter b = \/na + /1 —né, and w = /1 — na + /n@é
Environment in thermal bath with mean photon number &
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COVERT COMMUNICATION:

> DEFINITION: (M, K, n,¢,0) -code C
Uniformly distributed message W € |1, M| 1— 3
Uniformly distributed secret key S < |1, K| shared with Bob
Encoding channel Esw_an : |s) (s|s ® |w) (w|w — pan(s, w)
Collection of decoding POVMs {{M5:" b werimy Fsepix]

Induces pwr = > } tI‘B ((ﬁi\’;"gw) pan(s, w)) at Willie
> RELIABILITY METRIC

Maximal average probability of error P, = nﬁlé»;(]] IP(W + WIS = s) <€
sc

>  GOVERTNESS METRIC
For any test 7w~ {013y conducted by Willie, the probabilities of false alarm a and missed detection S satisfy

1
1>a+ﬂ>1—§}|ﬁw POWH

Any test conducted by Willie is close to blind test

> Trace distance is the covertness metric that carries operational meaning



MOTIVATION:

>  [Tahmasbi-Bloch’19] investigates the impact and operational meaning of different covertness metrics for classical case
Relative entropy IDD(@” | Q")
Variational distance V(Q", Q¥")
Optimal probability of missed detection B.(QZ", Q")

>  CHOICE OF COVERTNESS METRIC MATTERS

No strong converse for covertness in covert communication
Asymptotics of covert capacity depend on covertness metric

> DRAWBACKS OF RELATIVE ENTROPY
Loose proxy for variational distance, more stringent
Operational meaning preserved in variational distance

» Using variational distance leads to a 25% relative increase in throughput [Wang-Bloch’21]

»  TAKE AWAY: variational distance is more operationally relevant, and so is trace distance



MOTIVATION:

>  KNOWN RELATIONS [Hayashi’17]

1 VF(p.0) < 5l ol < VI~ F(p.0) < VDo [[0)

Fidelity is multiplicative for tensor-product states
Fidelity retains properties of distance through purified distance P(p, o) £ /1 — F(p, o)

>  [Bullock et al.’20], [Gagatsos et al.’20] use quantum relative entropy

»  We use purified distance (and therefore fidelity) as intermediate metric in achievability
TECHNICAL DETAIL: require triangle inequality and purified distance for resolvability analysis



COVERT CAPACITY:

DEFINITION: ,
(M, K, n € ) - code is e-reliable and ¢ -covertness if P. < e and =||pw» — pihy ||, <0 -
The maximum number of messages that can be transmitted by an (M, K, n, ¢, d) -code

is M*(n,¢,6).
Covert Capacity: L log M*(n, €, 6)
Ceov = lim
P00 NG
L . .. logK
For a sequence of code achieving covert capacity, secret key throughput |snh_>moo o

THEOREM:
Covert capacity satisfies

2+/nk(nk + 1) | 1 1 (19 2+/nk(nk + 1) | 1
s (L =) @7 () 2 G xS s (14 = )

Lower bound is achievable with key throughput satisfying

2\/nk(nk + 1) (1og <1+n—1k> 1inlog (1 | (1—177)k)>+5

where (x)T = max(x, 0).

>  TAKE AWAY: covert capacity is a function of covertness metric.



COVERT CAPACITY:

. 1
>  COMPARISON: given 5H,aWn powll \/1 — F(pwr, pST) < VD (pw-

,0 <0

Upper-bound is derived with trace distance metric, denoted by fy/(9)

Lower-bound is derived with fidelity metric, denoted by f£(5?)

We also compare previous result by [Gagatsos et al.’20] with quantum relative entropy metric, denoted by 75 (5?)
» However, [Bullock et al.’20] and [Gagatsos et al.’20] consider quantum Pinsker’s inequality

1. D(pw- || py 1
QHIOWn ’OOWH]_ < \/ (,0\/\/2 IOO,W) < 5

We denote this result by 5 (262)

»  From above inequalities, fv(6) > fr(6%) = fp(26%) > fp(6?)
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ACHIEVABILITY:

1
> GOAL: use fidelity to ensure ||pw» — 5w /[, < \/1 — F(pwn. p§Ty) <0
1
»  Coherent-state QPSK signaling with mean photon number decreasing in O <\ﬁ>
Ensure signal to be close to innocent states
Precise control of covertness

>  One-shot channel reliability and resolvability
Existence of codebook that is reliable and does not change covertness much
Second-order asymptotic



ACHIEVABILITY:

»  Coherent-state QPSK with decreasing mean photon number

1
Generated state at Alice’s system pn xa = E 2 X) (X|y ®
x€[0,3]

uneij/2> <unej7rx/2|
A

- 1 .
Induced state at Willie’s system poxw £ > 2 1X) Xlx @ pokw (V1 = nu,e/™/?)
x€[0,3]

INTUITION: perturbation in displacement around thermal state

»  Perturbation theory for quantum fidelity [Grace-Guha’21]

LEMMA:

I

By setting v, 2 (4nk(nk + 1) — 2+)°) we have

F (oW pow) =1— (06 —2K) -



ACHIEVABILITY:
» Make sure existence of a codebook that is both reliable and covert

>  INGREDIENT
Position-based coding and sequential decoding [Wilde’17], [Oskouei et al.’18]
Convex-split lemma [Anshu et al.’19], [Khatri et al.’19]

LEMMA:
By choosing fixe, 5,71, 72,73 > 0, then for a bi-partite state Pxa and a channel

G : pxa— pxsw , there exists a coding scheme such that

e’ /10— 4e”
log M > Dy (oxs || px @ pB) — log 7 |
10+

1 3
log MK < D272 (pxw || px © pw) + 2log (7) o (?) |
2 3

62

EC,S{P(VAV £ W\s)} < 5.

1.
Ze{ Jow —pwly b < n =2

where C Is the codebook.



CONVERSE:

>  Analyze trace distance directly with technigues developed in [Tahmasbi-Bloch’19, Zhang et al.’19, Wang-Bloch’21]

»  Constrained to coherent-state codebook
A weaker converse
No entanglement within modes
Possible to lift this constraint

>  Establish lower bound on trace distance related to minimum received photon number of codewords
Require us to find a simple to analyze yet powerful test for Willie
Photon counter

»  Show existence of good sub-code resulting in low covertness metric

>  Obtain upper bound on covert message size of good sub-code



CONVERSE:

»  Suboptimal photon counting test POVM { T,/ — T}

T £ Z imy) (M2 @ [mp) (M2 @ -+ @ |mp) (My]
mitmy+-+mp 2T

Since modes are in tensor-product states, it reduces to a classical test T(m") = 1« Z mp =T,

»  Carefully choose threshold and use photon number statistics of displaced thermal states with Berry-Esseen Theorem

LEMMA:

U —277)/V* - nnk , we have
T n
L owe sl >1 -0~

>1-20 (1 —n)N, (1 —n)?(1 +2nk)N; By + B
- o /mkk 1 1)) &/2rm2[nk(nk + D2 /A

By settingr =

n

2
N, = min oz(m)|

where N meMZ

i IS minimum photon number of codewords, « is false-alarmed
=1

probabillity, 5 is missed-detection probabillity, and By, B; are some constants.



CONVERSE:

> INTUITION: covertness metric is higher in a set of high-photon-number codewords

»  Partition code C into high-photon-number (bad) sub-code ¢!") and low-photon-number (good) sub-code ¢¥

LEMMA:

For any covert codebook C, let lim v, = 0. Then there exists a sub-code C¥) such that

n— o0

‘C(£)| > v, |C|] and photon-number of codewords N(¢) < Av/n

A 2v/nk(nk+1) (196 v2(1 —n)%(1 + 2nk)
AT 1 —n ¢ ( 2 4+/2mn[nk(nk + 1)]3/2 > |

where rdepends on channel.

»  Characterize upper bound on photon-number of codewords in good sub-code



CONVERSE:

» Code C consists of K sub-codes Cs indexed by key s € |1, K]
Size of each sub-code is M
c) & c.ne
By pigeonhole principle,

ng) = ynM

»  We find an upper bound on log c{Y| and therefore apply itto M
For bosonic channel, what we need is the bound on photon number we derived earlier
By Fano’s inequality, Holevo bound, and capacity of bosonic channel

€n

A 1
c (1 1 < nC(—=,n, k) < nAy/nlo <1= )
( %) (ﬁn ) <7 g 1k

log

log cﬁﬁ) — log v,
IiminflogM < liminf

n— oo \/ﬁ n— oo \/ﬁ

D o2 ) 0 ()

C(N, N, n)is channel capacity of bosonic channel with photon numbers of two ports N, N and transmissivity 7



CONCLUSION AND REMARKS

TSh Sn 1—n 2

4 1 2 B
» Gaussian ensemble < exp ( o] ) | ) <a} with s, = 2/nk(nk +1) Q1 (1—6>wou|d achieve upper-bound

\

TECHNICAL DIFFICULTY: our coding theorem does not support uncountable alphabet
»  Direct analysis of QPSK signaling with trace distance is challenging

> Jo extend converse to general n-mode states, consider applying an entanglement-breaking processing channel
pw 3 tr (|m) (m| pw) ® |m) (ml,,

Destroy entanglement between modes
Any single-mode Gaussian state is thermal state with displacement and symplectic transform

>  CONCLUSION
Covert capacity of bosonic channel depends on choice of covertness metric
Trace distance is ultimate covertness metric carrying operational meaning
Characterize secret-key throughput of bosonic covert communications
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